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Optimization principles underpin much of
computational �nance� Historically this has
been particularly true in the area known as
portfolio analysis � the selection and modi��
cation of a collection of �nancial instruments
such as stocks� bonds� and options� Indeed�
Harry Markowitz was a co�recipient of the
���� Nobel Prize in economics in recognition
of his work involving novel application of op�
timization concepts to portfolio analysis�
The ���	 Nobel Prize in economics was won

by Robert Merton and Myron Scholes for their
role in the discovery and development of the
most famous equation in �nance� the Black�
Scholes 
B�S� equation �� ���� This work has�
at �rst blush� little to do with optimization�
Instead� it rests on notions from stochastic cal�
culus� di�erential equations� and �nance �arbi�
trage� principles� However� it should be noted
that application of the Black�Scholes equation

and� more interestingly� a generalized version�
requires knowledge of a key parameter� the
volatility� This is where numerical optimiza�
tion can help�

�This expository article is targetted to a reader fa�
miliar with numerical methods� little mathematical ��
nance background is required� A more complete and
mathematical treatment is given in ����

In this article we discuss the 
generalized�
Black�Scholes equation and sketch how inverse
optimization problems can be formulated to
yield smooth volatility surfaces� The latter is
useful both in the accurate pricing of exotic
options as well as computing sensitivities�

� The Black�Scholes �B�S�
Equation�

The Black�Scholes equation is the cornerstone
of options pricing� Its� derivation is thoroughly
covered in many introductory books on math�
ematical �nance� e�g�� ���� ��� ���� One of the
basic assumptions behind the Black�Scholes
model is that the behaviour of the underlying
S follows geometric Brownian motion�
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where the left�hand�side is an instantaneous
relative change in the underlying 
e�g�� the
stock value�� � is known as the �drift� term

average rate of growth of the stock value�
and �dt is the predictable component of the
relative change in the stock price� The sec�

�



ond term on the right�hand�side� �dWt� corre�
sponds to the random behaviour of the stock�
� is known as the volatility of the stock

volatility is the standard deviation� or square�
root of the variance� of the returns of the un�
derlying� and dWt is random variable drawn
from a normal distribution 
the mean of dWt

is zero� the variance is dt��
Equation 
�� has proven to be a very useful

model of stock behaviour� Nevertheless� even
with �optimal� choices of � and �� it does not
always capture reality� We discuss a general�
ization to overcome this gap in x�
The question we are now faced with is how

to value on option de�ned on an underlying S�
e�g�� stock� whose growth follows 
��� The an�
swer� under a number of assumptions includ�
ing a no�arbitrage assumption� satis�es the
Black�Scholes partial di�erential equation�
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where V is the value of the option 
i�e�� that
which we are trying to determine�� r is the
risk�free interest rate� Detailed derivation of

� is given in most texts on mathematical ��
nance� e�g�� ���� ��� ����
Interestingly� the drift term � does not ap�

pear in equation 
�� Consequently� knowledge
of � is not required to evaluate V � 
This is
known as risk neutral valuation�� However�
additional information beyond boundary con�
ditions is required before 
� can be of prac�
tical value� In particular� a value for �� the
volatility� is required� � is not directly observ�
able� The methods for determining the volatil�
ity � fall into two categories� First� � can
be estimated from �rst principles� i�e�� based
on the de�nition of standard deviation of the
returns and using historical data� Typically
this leads to ��dimensional regression problem�
e�g�� ���� ����
This �rst principles approach is easy to im�

plement but has several unpleasant aspects�

For example� there is the question of how far
back in time to go and how the data should
best be weighted� In addition� it is disconcert�
ing that the regression solution for � does not
usually yield� through 
�� the actual price for
any known traded option�

A second� more common approach� is cal�
culation of implied volatility 
implied vol� to
yield a value for � � Implied volatility is deter�
mined by solving a simple ��dimensional in�
verse problem involving a similar traded op�
tion 
with known price� on the same underly�
ing� Implied volatility is thus that value of �
that� when substituted into equation 
� along
with appropriate boundary conditions� yields
the known price of the corresponding option�
Thus for each traded option there is a corre�
sponding implied vol� and one such value can
be used to determine the �fair� price of a new
option on the same underlying�

Use of implied vol is very common in the
trading world� Indeed� implied vol is often
�quoted� instead of option prices� Every ��
nancial engineering software package includes
an implied vol computation� For example� in
the MATLAB Financial Toolbox ����� a Black�
Scholes implied volatility computation for a
European call option is invoked by

� � blsimpv�sc�K�r�T� call�

where sc is the current price of the underlying�
K is the strike price� r is the risk free interest
rate� T is the time to maturity� and call is the
value 
or price� of the call option under con�
sideration� Function blsimpv uses Newton�s
method�

Despite the popularity of the implied volatil�
ity concept� there are problems with its use�
For example� given several di�ering implied
vol computations on the same underlying� how
should a value for � be chosen to price an ex�
otic option on the same underlying� a more
pernicious problem has to do with hedging�
We refer the reader to basic books on �nance�



e�g�� ���� ��� ���� for discussions of hedging
strategies� Here it su�ces to say that hedging
involves computing the sensitivity of V with
respect to di�erent parameters� The choice
of � can greatly a�ect the sensitivity calcula�
tion 
and thus the hedging strategy� and so
an arbitrary choice from a set of �implied vols�
can be misleading� Moreover� there is much
evidence to indicate that � varies with time
and�or strike price 
e�g�� ��� �� ���� this sug�
gests � is better thought of as a function of

s� t�� i�e�� � � �
s� t�� A framework for this
approach is discussed in x�

� Generalized
Black�Scholes�

A reasonable and realistic alternative is to
think of volatility as a surface� � � �
s� t��
rather than a constant� In particular� a more
general model of the evolution of the stock
price� replacing 
�� is the ��factor continuous
di�usion approach�

dSt

St
� �
St� t�dt� �
St� t�dWt� 
��

where both � � �
s� t� and � � �
s� t� are
continuous di�erentiable functions of the un�
derlying s and t� Note that St is a stochastic
variable andWt is standard Brownian motion�
The value of a European option where the un�
derlying is de�ned by 
�� satis�es the general�
ized Black�Scholes equation �����
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Unlike standard Black�Scholes� equation 
��
does not enjoy an explicit solution� however�
a discretized PDE approach can be used pro�
vided the surface �
s� t� is available for evalu�
ation at all the grid points� Equation 
�� ob�

viously represents a potentially more power�
ful approach than the standard B�S equation
which requires volatility to be a single num�
ber� But we are left with the question� how
can the volatility surface be obtained�
Similar to the scalar case� an inverse 
im�

plied� point of view can be invoked� This
approach uses current 
or very recent� and
trusted data� i�e�� reliable prices on recently
traded options on the underlying of question�
A straightforward implementation to this in�
verse problem� assuming model 
��� yields a
large�scale optimization problem�
To see this suppose we have m data triplets�


�vj � Tj �Kj�� corresponding to recently traded
options on the same underlying� the option
price is �vj � Tj is the time to maturity� and
Kj is the strike price� Discretize s and t con�
sistent with the numerical procedure to solve

��� to yield an M �vector s and N �vector t�
Surface �
s� t� is thus represented as an M �
by�N matrix  
of unknowns�� We are now
faced with a vastly underdetermined problem�
in general� since the number of data points�
m� satis�es m � M � N � 
A typical value
is m � � whereas the product M � N could
easily be ���� ��� or more�� To take up the
slack� and introduce smoothness into �� Osher
and Lagnado ��� propose minimization over
�
s� t��  after discretization� of the function

mX

j��


vj
�
s� t��� � �vj�
� � �kr�
s� t�k�� 
!�

where � is a positive constant and k�k� denotes
the L� norm�
A di�culty with this approach� in addition

to the delicate choice of the parameter �� is
the computational challenge� Problem 
!� is a
very large optimization problem 
M �N vari�
ables  �� Moreover� the �rst term in 
!� is
very nonlinear and dense � density is due to
the evaluation of the discretized aproximation
of the PDE in 
�� which depends on the entire



surface �
s� t�� i�e�� each point of the matrix  
is involved in the evaluation of 
�� for each j�
j � �� � � � �m�� Indeed� in light of the extreme
computational expense� Osher and Lagnado
compute only very approximate solutions to

!� using a steepest descent procedure� Un�
fortunately� approximate solutions can yield
rough surfaces �� Rough volatility surfaces� in
turn� can cause severe pricing and� especially�
hedging problems�

An alternative approach ��� yields a smaller
more tractable optimization problem� The so�
lution � is smooth� The essential idea is to
build in smoothness from the start� assume
�
s� t� is a bi�cubic spline� e�g�� ��� 	�� de�
�ned on p knots� The knots are located in
a regular way comensurate with the known
data� In more detail� let the number of spline
knots be p � m� Choose a set of �xed
spline knots f
�sj � �tj�g

p
j��� Given the spline

knots with corresponding local volatility val�

ues ��i
def
� �
�si� �ti�� an interpolating cubic

spline c
s� t� with a �xed end condition 
e�g��
the natural spline end condition� is uniquely
de�ned by setting c
�si� �ti� � ��i� i � �� � � � � p�
The freedom in this problem is represented by
the volatility values f��ig at the given knots
f
�si� �ti�g� If �� is a p�vector� �� � 
���� � � � � ��p�

T �
then we denote the corresponding interpolat�
ing spline with the speci�ed end condition as
c
s� t� ����

For j � �� � � � �m� let

vj
c
s� t� ����
def
� v
c
s� t� ����Kj � Tj��

To allow the possibility of incorporating addi�
tional a priori information� l and u are lower
and upper bounds that can be imposed on
the local volatilities at the knots� Thus� we
de�ne the inverse spline local volatility ap�

proximation problem� Given p spline knots�


�s�� �t�� � � � � 
�sp� �tp�� solve for the p�vector ��

min
����p

f
���
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�
�
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subject to l � �� � u� 
	�

Note that 
�� is a small optimization prob�
lem� typically with m � p � � variables�
the solution has certain guaranteed smooth�
ness properties 
due to the use of the bi�cubic
spline model�� and� the given data will be usu�
ally be satis�ed provided it is consistent�

� Concluding Remarks�

The volatility surface produced by the bi�cubic
spline optimization approach discussed above
is visually smooth in the area of interest ����
Indeed� given the location of the knots it can
be argued that the computed surface � is the
smoothest surface consistent with the 
dis�
cretized� model 
�� and the given data� How�
ever� the real test of any volatility surface
computation� in addition to its computational
attractiveness� is its useability vis�"a�vis pric�
ing and� especially� hedging with the gener�
alized Black�Scholes model 
��� Hedging in�
volves computing the sensitivity of the option
price with respect to di�erent parameters� Ini�
tial encouraging experiments are reported in
���� 
E�cient implementation of some sensi�
tivity calculations involves applying either au�
tomatic di�erentiation or �nite�di�erencing in
a structured way ��� !���
We conclude with three remarks� First�

while the bi�cubic spline optimization ap�
proach appears to produce a smooth� attrac�
tive� and useful volatility surface in the usual
area of interest � in an 
s� t��region around
known strike and maturities for current op�
tion data � the volatility surface becomes less
reliable outside of this region� This is usually
not a problem but can be troublesome when



pricing 
or hedging with� long�dated options�
Pricing of long�dated options is an active area
of investigation� Second� further work needs
to be done on how to choose the number and
location of the knots� Certainly fewer knots fa�
cilitate smoothness � our experience supports
using fewer knots than the number of data
points� but enough to force f in 
�� to be
close to zero� Finally� we expect that the bi�
cubic optimization approach to this volatility
surface problem can be applied to other in�
verse problems involving nonlinear� underde�
termined systems both within and outside of
�nance�
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