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Optimization principles underpin much of
computational finance. Historically this has
been particularly true in the area known as
portfolio analysis - the selection and modifi-
cation of a collection of financial instruments
such as stocks, bonds, and options. Indeed,
Harry Markowitz was a co-recipient of the
1990 Nobel Prize in economics in recognition
of his work involving novel application of op-
timization concepts to portfolio analysis.

The 1997 Nobel Prize in economics was won
by Robert Merton and Myron Scholes for their
role in the discovery and development of the
most famous equation in finance, the Black-
Scholes (B-S) equation [2, 14]. This work has,
at first blush, little to do with optimization.
Instead, it rests on notions from stochastic cal-
culus, differential equations, and finance ‘arbi-
trage’ principles. However, it should be noted
that application of the Black-Scholes equation
(and, more interestingly, a generalized version)
requires knowledge of a key parameter, the
volatility. This is where numerical optimiza-
tion can help.

*This expository article is targetted to a reader fa-
miliar with numerical methods; little mathematical fi-
nance background is required. A more complete and
mathematical treatment is given in [3].

In this article we discuss the (generalized)
Black-Scholes equation and sketch how inverse
optimization problems can be formulated to
yield smooth volatility surfaces. The latter is
useful both in the accurate pricing of exotic
options as well as computing sensitivities.

1 The Black-Scholes (B-S)
Equation.

The Black-Scholes equation is the cornerstone
of options pricing. Its’ derivation is thoroughly
covered in many introductory books on math-
ematical finance, e.g., [10, 11, 16]. One of the
basic assumptions behind the Black-Scholes
model is that the behaviour of the underlying
S follows geometric Brownian motion,

s,

t

= pdt + odWy, (1)
where the left-hand-side is an instantaneous
relative change in the underlying (e.g., the
stock value), p is known as the ‘drift’ term
(average rate of growth of the stock value)
and pdt is the predictable component of the
relative change in the stock price. The sec-



ond term on the right-hand-side, cdW;, corre-
sponds to the random behaviour of the stock:
o is known as the wolatility of the stock
(volatility is the standard deviation, or square-
root of the variance, of the returns of the un-
derlying) and dW; is random variable drawn
from a normal distribution (the mean of dW;
is zero, the variance is dt).

Equation (1) has proven to be a very useful
model of stock behaviour. Nevertheless, even
with ‘optimal’ choices of o and p, it does not
always capture reality. We discuss a general-
ization to overcome this gap in §2.

The question we are now faced with is how
to value on option defined on an underlying S,
e.g., stock, whose growth follows (1). The an-
swer, under a number of assumptions includ-
ing a no-arbitrage assumption, satisfies the
Black-Scholes partial differential equation:
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where V' is the value of the option (i.e., that
which we are trying to determine), r is the
risk-free interest rate. Detailed derivation of
(2) is given in most texts on mathematical fi-
nance, e.g., [10, 11, 16].

Interestingly, the drift term p does not ap-
pear in equation (2). Consequently, knowledge
of p is not required to evaluate V. (This is
known as risk neutral valuation.) However,
additional information beyond boundary con-
ditions is required before (2) can be of prac-
tical value. In particular, a value for o, the
volatility, is required; o is not directly observ-
able. The methods for determining the volatil-
ity o fall into two categories. First, o can
be estimated from first principles, i.e., based
on the definition of standard deviation of the
returns and using historical data. Typically
this leads to 1-dimensional regression problem,
e.g., [10, 16].

This first principles approach is easy to im-
plement but has several unpleasant aspects.

For example, there is the question of how far
back in time to go and how the data should
best be weighted. In addition, it is disconcert-
ing that the regression solution for o does not
usually yield, through (2), the actual price for
any known traded option.

A second, more common approach, is cal-
culation of implied volatility (implied vol) to
yield a value for o . Implied volatility is deter-
mined by solving a simple 1-dimensional in-
verse problem involving a similar traded op-
tion (with known price) on the same underly-
ing. Implied volatility is thus that value of o
that, when substituted into equation (2) along
with appropriate boundary conditions, yields
the known price of the corresponding option.
Thus for each traded option there is a corre-
sponding implied vol, and one such value can
be used to determine the “fair” price of a new
option on the same underlying.

Use of implied vol is very common in the
trading world. Indeed, implied vol is often
‘quoted’ instead of option prices. FEvery fi-
nancial engineering software package includes
an implied vol computation. For example, in
the MATLAB Financial Toolbox [13], a Black-
Scholes implied volatility computation for a
European call option is invoked by

o = blsimpv(sc,K,r,T, call)

where sc is the current price of the underlying,
K is the strike price, r is the risk free interest
rate, T is the time to maturity, and call is the
value (or price) of the call option under con-
sideration. Function blsimpv uses Newton’s
method.

Despite the popularity of the implied volatil-
ity concept, there are problems with its use.
For example, given several differing implied
vol computations on the same underlying, how
should a value for o be chosen to price an ex-
otic option on the same underlying? a more
pernicious problem has to do with hedging.
We refer the reader to basic books on finance,



e.g., [10, 11, 16], for discussions of hedging
strategies. Here it suffices to say that hedging
involves computing the sensitivity of V' with
respect to different parameters. The choice
of o can greatly affect the sensitivity calcula-
tion (and thus the hedging strategy) and so
an arbitrary choice from a set of ‘implied vols’
can be misleading. Moreover, there is much
evidence to indicate that o varies with time
and/or strike price (e.g., [6, 8, 9]): this sug-
gests o is better thought of as a function of
(s,t), i.e.,, 0 = o(s,t). A framework for this
approach is discussed in §2.

2 Generalized
Black-Scholes.

A reasonable and realistic alternative is to
think of volatility as a surface, o = o(s,t),
rather than a constant. In particular, a more
general model of the evolution of the stock
price, replacing (2), is the 1-factor continuous
diffusion approach:

dS;

? = M(St,t)dt + U(St,t)th,
t

(3)
where both ¢ = o(s,t) and u = u(s,t) are
continuous differentiable functions of the un-
derlying s and ¢t. Note that S; is a stochastic
variable and W; is standard Brownian motion.
The value of a European option where the un-
derlying is defined by (3) satisfies the general-
ized Black-Scholes equation [14]:
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Unlike standard Black-Scholes, equation (4)
does not enjoy an explicit solution; however,
a discretized PDE approach can be used pro-
vided the surface o (s, t) is available for evalu-
ation at all the grid points. Equation (4) ob-

o(s,t)

viously represents a potentially more power-
ful approach than the standard B-S equation
which requires volatility to be a single num-
ber. But we are left with the question: how
can the volatility surface be obtained?

Similar to the scalar case, an inverse (im-
plied) point of view can be invoked. This
approach uses current (or very recent) and
trusted data, i.e., reliable prices on recently
traded options on the underlying of question.
A straightforward implementation to this in-
verse problem, assuming model (4), yields a
large-scale optimization problem.

To see this suppose we have m data triplets,
(95, Ty, Kj), corresponding to recently traded
options on the same underlying: the option
price is v;, T; is the time to maturity, and
Kj; is the strike price. Discretize s and ¢ con-
sistent with the numerical procedure to solve
(4), to yield an M-vector s and N-vector t.
Surface o(s,t) is thus represented as an M-
by-N matrix ¥ (of unknowns). We are now
faced with a vastly underdetermined problem,
in general, since the number of data points,
m, satisfies m <« M % N. (A typical value
is m =~ 20 whereas the product M * N could
easily be 100,000 or more). To take up the
slack, and introduce smoothness into o, Osher
and Lagnado [12] propose minimization over
o(s,t), X after discretization, of the function

m
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j=1

where ) is a positive constant and ||+||2 denotes
the L? norm.

A difficulty with this approach, in addition
to the delicate choice of the parameter ), is
the computational challenge. Problem (5) is a
very large optimization problem (M % N vari-
ables ¥). Moreover, the first term in (5) is
very nonlinear and dense - density is due to
the evaluation of the discretized aproximation
of the PDE in (4) which depends on the entire



surface o (s, t), i.e., each point of the matrix X
is involved in the evaluation of (4) for each j,
j=1,---,m.) Indeed, in light of the extreme
computational expense, Osher and Lagnado
compute only very approximate solutions to
(5) using a steepest descent procedure. Un-
fortunately, approximate solutions can yield
rough surfaces 0. Rough volatility surfaces, in
turn, can cause severe pricing and, especially,
hedging problems.

An alternative approach [3] yields a smaller
more tractable optimization problem. The so-
lution o is smooth. The essential idea is to
build in smoothness from the start: assume
o(s,t) is a bi-cubic spline, e.g., [1, 7], de-
fined on p knots. The knots are located in
a regular way comensurate with the known
data. In more detail, let the number of spline
knots be p < m. Choose a set of fixed
spline knots {(5;,%;)}/—,. Given the spline
knots with corresponding local volatility val-
ues &; def o(5;,t;), an interpolating cubic
spline ¢(s,t) with a fixed end condition (e.g.,
the natural spline end condition) is uniquely
defined by setting c(5;,%;) = 64,1 = 1, -+, p.
The freedom in this problem is represented by
the volatility values {7;} at the given knots
{(5:,t:)}. If 7 is a p-vector, & = (&1, --,5,) %,
then we denote the corresponding interpolat-
ing spline with the specified end condition as
c(s, t;0).

For j=1,---,m, let
U(C(S,t;ﬁ'),Kj,Tj).

To allow the possibility of incorporating addi-
tional a priori information, [ and u are lower
and upper bounds that can be imposed on
the local volatilities at the knots. Thus, we
define the inverse spline local volatility ap-
proximation problem: Given p spline knots,

51,t1) -+, (8,,1,), solve for the p-vector &
( P> lp
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Note that (6) is a small optimization prob-
lem, typically with m < p =~ 20 variables,
the solution has certain guaranteed smooth-
ness properties (due to the use of the bi-cubic
spline model), and, the given data will be usu-
ally be satisfied provided it is consistent.

i=1
subject to [ <& < wu.

3 Concluding Remarks.

The volatility surface produced by the bi-cubic
spline optimization approach discussed above
is visually smooth in the area of interest [3].
Indeed, given the location of the knots it can
be argued that the computed surface o is the
smoothest surface consistent with the (dis-
cretized) model (4) and the given data. How-
ever, the real test of any volatility surface
computation, in addition to its computational
attractiveness, is its useability vis-a-vis pric-
ing and, especially, hedging with the gener-
alized Black-Scholes model (4). Hedging in-
volves computing the sensitivity of the option
price with respect to different parameters. Ini-
tial encouraging experiments are reported in
[4]. (Efficient implementation of some sensi-
tivity calculations involves applying either au-
tomatic differentiation or finite-differencing in
a structured way [3, 5]).

We conclude with three remarks. First,
while the bi-cubic spline optimization ap-
proach appears to produce a smooth, attrac-
tive, and useful volatility surface in the usual
area of interest - in an (s,t)—region around
known strike and maturities for current op-
tion data - the volatility surface becomes less
reliable outside of this region. This is usually
not a problem but can be troublesome when



pricing (or hedging with) long-dated options.
Pricing of long-dated options is an active area
of investigation. Second, further work needs
to be done on how to choose the number and
location of the knots. Certainly fewer knots fa-
cilitate smoothness - our experience supports
using fewer knots than the number of data
points, but enough to force f in (6) to be
close to zero. Finally, we expect that the bi-
cubic optimization approach to this volatility
surface problem can be applied to other in-
verse problems involving nonlinear, underde-
termined systems both within and outside of
finance.
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